Contributors

The UC Davis Biochar Database represents data collected in our laboratory at UC Davis and extracted from a growing number of published studies. However, the real power of the database will be realized by contributions coming from members of the biochar community. We therefore encourage wide-spread participation in the database through our data entry module.  In addition, we anticipate collaborating with other biochar stakeholders who have access to large amounts of data for inclusion in the UCD Biochar Database. Substantial contributors of data will be acknowledged in the space below.

 

Substantial Contributors

The Biochar Water Treatment Research Consortium at Aqueous Solutions (www.aqsolutions.org) has provided their compilation of biochar sorption data to be included in the UC Davis Biochar Database. Currently we are sharing their collection of papers addressing sorption to biochar and we will incorporate this data into the full database in the near future. The Biochar Water Treatment Research Consortium is Josh Kearns, Kyle Shimabuku, R. Scott Summers, and Detlef R.U. Knappe. Contact information is available on the bios page

 

References

Data from the following references is included in the UC Davis Biochar Database:

3R: Recycle – Reuse – Reduce - Zero Emission Pyrolysis.

Abdelhafez, A. A., Li, J., and Abbas, M. H. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 117, 66-71.

Agegnehu, G., Bass, A.M., Nelson, P.N., Muirhead, B., Wright, G., and Bird, M.I. (2015). "Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia." Agriculture, Ecosystems and Environment 213, 72-85.

Agrafioti, E., Bouras, G., Kalderis, D., and Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis 101, 72-78.

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., and Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118, 536-544.

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-33.

Akhtar, S. S., Li, G., Andersen, M. N., and Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138, 37-44.

Alburquerque, J.A., Sanchez, M.E., Mora, M., Barron, Vidal. (2016). Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterization for carbon sequestration and agricultural uses. Journal of Cleaner Production 120, 191-197.

Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., and Cayuela, M. L. (2015). High concentrations of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) failed to explain biochar's capacity to reduce soil nitrous oxide emissions. Environmental Pollution 196, 72-77.

Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D., and Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science 177, 671-680.

Ameloot, N., Sleutel, S., Case, S. D. C., Alberti, G., McNamara, N. P., Zavalloni, C., Vervisch, B., Vedove, G. d., and De Neve, S. (2014). C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biology and Biochemistry 78, 195-203.

Ameloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., and De Neve, S. (2013). Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy.

Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology 128, 593-597.

Angın, D., Altintig, E., and Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology 148, 542-549.

Angst, T. E., Six, J., Reay, D. S., and Sohi, S. P. (2014). Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agriculture, Ecosystems & Environment 191, 17-26.

Anjum, R., Krakat, N., Toufiq Reza, M., and Klocke, M. (2014). Assessment of mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test. Ecotoxicology and Environmental Safety 107, 306-312.

Anyika, C., Abdul Majid, Z., Ibrahim, Z., Zakaria, M., and Yahya, A. (2015). The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environmental Science and Pollution Research 22, 3314-3341.

Argudo, M., Salagre, P., Medina, F., Correig, X., and Sueiras, J. E. (1998). Obtention and surface characterisation of several ash-free chars. Carbon 36, 1027-1031.

Asif, M., Muhammad, N., Arshad, K. M., and Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pak. J. Agri. Sci. 5, 75-82.

Bai, M., Wilske, B., Buegger, F., Bruun, E. W., Bach, M., Frede, H.-G., and Breuer, L. (2014). Biodegradation measurements confirm the predictive value of the O:C-ratio for biochar recalcitrance. Journal of Plant Nutrition and Soil Science 177, 633-637.

Baronti, S., Vaccari, F. P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C., and Genesio, L. (2014). Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy 53, 38-44.

Bastos, A. C., Prodana, M., Abrantes, N., Keizer, J. J., Soares, A. M. V. M., and Loureiro, S. (2014). Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays. Ecotoxicology 23, 1784-1793.

Borchard, N., Siemens, J., Ladd, B., Möller, A., and Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research 144, 184-194.

Brennan, A., Jiménez, E., Puschenreiter, M., Alburquerque, J., and Switzer, C. (2014a). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil 379, 351-360.

Brennan, A., Moreno Jiménez, E., Alburquerque, J. A., Knapp, C. W., and Switzer, C. (2014b). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution 193, 79-87.

Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., and Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy 66, 176-185.

Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., and Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28, 386-396.

Bruun, E. W., Petersen, C., Strobel, B. W., and Hauggaard-Nielsen, H. (2012). Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar. Soil Sci. Soc. Am. J. 76, 1142-1148.

Bruun, E. W., Petersen, C. T., Hansen, E., Holm, J. K., and Hauggaard-Nielsen, H. (2014). Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management 30, 109-118.

Buss, W., and Mašek, O. (2014). Mobile organic compounds in biochar – A potential source of contamination – Phytotoxic effects on cress seed (Lepidium sativum) germination. Journal of Environmental Management 137, 111-119.

Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., and Vityakon, P. (2015). Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237-238, 105-116.

C. Peterson, S., Appell, M., A. Jackson, M., and A. Boateng, A. (2012). Comparing Corn Stover and Switchgrass Biochar: Characterization and Sorption Properties. Journal of Agricultural Science 5, 1-8.

Cabrera, A., Cox, L., Spokas, K., Hermosín, M. C., Cornejo, J., and Koskinen, W. C. (2014). Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of The Total Environment 470–471, 438-443.

Calvelo Pereira, R., Camps Arbestain, M., Kaal, J., Vazquez Sueiro, M., Sevilla, M., and Hindmarsh, J. (2014). Detailed carbon chemistry in charcoals from pre-European Maori gardens of New Zealand as a tool for understanding biochar stability in soils. European Journal of Soil Science 65, 83-95.

Calvelo Pereira, R., Muetzel, S., Camps Arbestain, M., Bishop, P., Hina, K., and Hedley, M. (2014). Assessment of the influence of biochar on rumen and silage fermentation: A laboratory-scale experiment. Animal Feed Science and Technology 196, 22-31.

Cely, P., Tarquis, A., Paz-Ferreiro, J., Méndez, A., and Gascó, G. (2014a). Factors driving carbon mineralization priming effect in a soil amended with different types of biochar. Solid Earth Discussions 6, 849-868.

Cely, P., Tarquis, A., Paz-Ferreiro, J., Méndez, A., and Gascó, G. (2014b). Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 5, 585-594.

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research 46, 437-444.

Cheah, S., Malone, S. C., and Feik, C. J. (2014). Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover. Environmental Science & Technology 48, 8474-8480.

Chen, B., and Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127-133.

Chen, C.-P., Cheng, C.-H., Huang, Y.-H., Chen, C.-T., Lai, C.-M., Menyailo, O. V., Fan, L.-J., and Yang, Y.-W. (2014a). Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232–234, 581-588.

Chen, D., Liu, D., Zhang, H., Chen, Y., and Li, Q. (2015). Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and energy yields.f Fuel 148, 79-86.

Chen, D., Zhou, J., and Zhang, Q. (2014b). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology 169, 313-319.

Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., and Ren, L. (2014c). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology 164, 47-54.

Chen, T., Zhou Z., Xu S., Wang H., and Lu W. (2015). Adsorption Behavior Comparison of Trivalent and Hexavalent Chromium on Biochar Derived from Municipal Sludge. Bioresource Technology 190, 388-94. 

Cheng, Y., Cai, Z.-c., Chang, S., Wang, J., and Zhang, J.-b. (2012). Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils 48, 941-946.

Chia, C. H., Singh, B. P., Joseph, S., Graber, E. R., and Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis 108, 26-34.

Chintala, R., Mollinedo, J., Schumacher, T. E., Papiernik, S. K., Malo, D. D., Clay, D. E., Kumar, S., and Gulbrandson, D. W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials 179, 250-257.

Chintala, R., Schumacher, T. E., Kumar, S., Malo, D. D., Rice, J. A., Bleakley, B., Chilom, G., Clay, D. E., Julson, J. L., Papiernik, S. K., and Gu, Z. R. (2014a). Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials 279, 244-256.

Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., Clay, S. A., and Julson, J. L. (2014b). Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures. CLEAN – Soil, Air, Water 42, 626-634.

Chun, Y., Sheng, G., Chiou, C. T., and Xing, B. (2004). Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science & Technology 38, 4649-4655.

Cimò, G., Kucerik, J., Berns, A. E., Schaumann, G. E., Alonzo, G., and Conte, P. (2014). Effect of Heating Time and Temperature on the Chemical Characteristics of Biochar from Poultry Manure. Journal of Agricultural and Food Chemistry 62, 1912-1918.

Conti, R., Rombol�, A. G., Modelli, A., Torri, C., and Fabbri, D. (2014). Evaluation of the thermal and environmental stability of switchgrass biochars by Py–GC–MS. Journal of Analytical and Applied Pyrolysis 110, 239-247.

Cordero, T., Marquez, F., Rodriguez-Mirasol, J., and Rodriguez, J. J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80, 1567-1571.

Craig, I. P., Bundschuh, J., and Thorpe, D. (2015). PESTICIDE SUSTAINABLE MANAGEMENT PRACTICE (SMP) INCLUDING POROUS BIOCHAR/GEOPOLYMER STRUCTURES FOR CONTAMINATED WATER REMEDIATION. Int. J. of GEOMATE 9, 1523-1527.

Creamer, A. E., Gao, B., and Zhang, M. (2014). Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal 249, 174-179.

Crombie, K., and Mašek, O. (2014). Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy.

Crombie, K., Mašek, O., Cross, A., and Sohi, S. (2014). Biochar – synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy.

Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., and Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122-131.

Dai, Z., Li, R., Muhammad, N., Brookes, P. C., Wang, H., Liu, X., and Xu, J. (2014). Principle Component and Hierarchical Cluster Analysis of Soil Properties following Biochar Incorporation. Soil Sci. Soc. Am. J. 78, 205-213.

de la Rosa, J. M., Paneque, M., Miller, A. Z., and Knicker, H. (2014). Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Science of The Total Environment 499, 175-184.

Deenik, J. L., McClellan, T., Uehara, G., Antal, M. J., Jr., and Campbell, S. (2010). Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Science Society of America Journal 74, 1259-1270.

Demisie, W., Liu, Z., and Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil. CATENA 121, 214-221.

Devi, P., and Saroha, A. K. (2013). Effect Of Temperature On Biochar Properties During Paper Mill Sludge Pyrolysis. International Journal of ChemTech Research 5, 682-687.

Dong, D., Feng, Q., McGrouther, K., Yang, M., Wang, H., and Wu, W. (2014). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 1-10.

Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., and Lentz, R. D. (2013). Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology 65, 65-72.

Elleuch, A., Boussetta, A., Yu, J., Halouani, K., and Li, Y. (2013). Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physico-chemical characterization of the biochar fuel and cell performance examination. International Journal of Hydrogen Energy 38, 16590-16604.

Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology 114, 644-653.

Fang, C., Zhang, T., Li, P., Jiang, R.-f., and Wang, Y.-c. (2014a). Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater. International Journal of Environmental Research and Public Health 11, 9217-9237.

Fang, Q., Chen, B., Lin, Y., and Guan, Y. (2013). Aromatic and Hydrophobic Surfaces of Wood-derived Biochar Enhance Perchlorate Adsorption via Hydrogen Bonding to Oxygen-containing Organic Groups. Environmental Science & Technology 48, 279-288.

Fang, Y., Singh, B., Singh, B. P., and Krull, E. (2014b). Biochar carbon stability in four contrasting soils. European Journal of Soil Science 65, 60-71.

Fang, Y., Singh, B. P., and Singh, B. (2014d). Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agriculture, Ecosystems & Environment 191, 158-167.

Farrell, M., Macdonald, L., Butler, G., Chirino-Valle, I., and Condron, L. (2014). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils 50, 169-178.

Farrell, M., Macdonald, L. M., and Baldock, J. A. (2015). Biochar differentially affects the cycling and partitioning of low molecular weight carbon in contrasting soils. Soil Biology and Biochemistry 80, 79-88.

Felber, R., Leifeld, J., Horák, J., and Neftel, A. (2014). Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. European Journal of Soil Science 65, 128-138.

Fernández, J. M., Nieto, M. A., López-de-Sá, E. G., Gascó, G., Méndez, A., and Plaza, C. (2014). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of The Total Environment 482–483, 1-7.

Fitzgerald, S., Kolar, P., Classen, J., Boyette, M., and Das, L. (2015). Swine manure char as an adsorbent for mitigation of p-cresol. Environmental Progress & Sustainable Energy 34, 125-131.

Fulton, W., Gray, M., Prahl, F., and Kleber, M. (2013). A simple technique to eliminate ethylene emissions from biochar amendment in agriculture. Agronomy for Sustainable Development 33, 469-474.

Fungo, B., Guerena, D., Thiongo, M., Lehmann, J., Neufeldt, H., and Kalbitz, K. (2014). N2O and CH4 emission from soil amended with steam-activated biochar. Journal of Plant Nutrition and Soil Science 177, 34-38.

Galvez, A., Sinicco, T., Cayuela, M. L., Mingorance, M. D., Fornasier, F., and Mondini, C. (2012). Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems & Environment 160, 3-14.

García-Jaramillo, M., Cox, L., Knicker, H. E., Cornejo, J., Spokas, K. A., and Hermosín, M. C. (2015). Characterization and selection of biochar for an efficient retention of tricyclazole in a flooded alluvial paddy soil. Journal of Hazardous Materials 286, 581-588.

Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., and Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the Asabe 51, 2061-2069.

Ghani, W. A. W. A. K., Mohd, A., da Silva, G., Bachmann, R. T., Taufiq-Yap, Y. H., Rashid, U., and Al-Muhtaseb, A. a. H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Industrial Crops and Products 44, 18-24.

Graber, E., Tsechansky, L., Gerstl, Z., and Lew, B. (2012). High surface area biochar negatively impacts herbicide efficacy. Plant and soil 353, 95-106.

Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., and Atakol, A. (2014). Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management 30, 182-188.

Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., and Nyamasoka, B. (2015). Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management 150, 250-261.

Hale, L., Luth, M., and Crowley, D. (2015). Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry 81, 228-235.

Hale, S. E., Endo, S., Arp, H. P. H., Zimmerman, A. R., and Cornelissen, G. (2015). Sorption of the monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar. Chemosphere 119, 881-888.

Hale, S. E., Hanley, K., Lehmann, J., Zimmerman, A. R., and Cornelissen, G. (2012). Effects of Chemical, Biological, and Physical Aging As Well As Soil Addition on the Sorption of Pyrene to Activated Carbon and Biochar. Environmental science & technology 46, 2479-2480.

Hall, K. E., Calderon, M. J., Spokas, K. A., Cox, L., Koskinen, W. C., Novak, J., and Cantrell, K. (2014). Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials. Water, Air, & Soil Pollution 225, 1-9.

Hameed, B. H., and El-Khaiary, M. I. (2008). Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. Journal of Hazardous Materials 153, 701-708.

Hammes, K., Smernik, R. J., Skjemstad, J. O., and Schmidt, M. W. I. (2008). Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Applied Geochemistry 23, 2113-2122.

Han, L., Sun, K., Jin, J., Wei, X., Xia, X., Wu, F., Gao, B., and Xing, B. (2014). Role of Structure and Microporosity in Phenanthrene Sorption by Natural and Engineered Organic Matter. Environmental Science & Technology 48, 11227-11234.

Han, X., Liang, C.-f., Li, T.-q., Wang, K., Huang, H.-g., and Yang, X.-e. (2013a). Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. Journal of Zhejiang University SCIENCE B 14, 640-649.

Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., and Chang, J. (2013b). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management 118, 196-204.

Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H. K., and Werner, D. (2015). Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research 70, 394-403.

Hanwu Lei, L.Z., Wang, L., Yadavalli, G., Zhang, X., Wei, Y., Liu, Y., Yan, D., Chen, S., and Ahring, B. (2015). Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. Journal of Analytical and Applied Pyrolysis 115, 149-156.

Harvey, O. R., Herbert, B. E., Rhue, R. D., and Kuo, L.-J. (2011). Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environmental Science & Technology 45, 5550-5556.

Herath, H. M. S. K., Camps-Arbestain, M., and Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209–210, 188-197.

Herath, H. M. S. K., Camps-Arbestain, M., Hedley, M., Van Hale, R., and Kaal, J. (2014a). Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73, 35-46.

Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., and Vithanage, M. (2014c). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 1-13.

Hmid, A., Mondelli, D., Fiore, S., Fanizzi, F. P., Al Chami, Z., and Dumontet, S. (2014). Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass and Bioenergy 71, 330-339.

Holm, T. R., Machesky, M. L., and Scott, J. W. (2014). Sorption of Polycyclic Aromatic Hydrocarbons (PAHs) to Biochar and Estimates of PAH Bioavailability. Champaign, IL: Illinois Sustainable Technology Center.

Houben, D., Evrard, L., and Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92, 1450-1457.

Houben, D., Sonnet, P., and Cornelis, J.-T. (2014). Biochar from Miscanthus: a potential silicon fertilizer. Plant and Soil 374, 871-882.

Hu, Y.-L., Wu, F.-P., Zeng, D.-H., and Chang, S. (2014). Wheat straw and its biochar had contrasting effects on soil C and N cycling two growing seasons after addition to a Black Chernozemic soil planted to barley. Biology and Fertility of Soils 50, 1291-1299.

Hua, L., Lu, Z., Ma, H., and Jin, S. (2014). Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy 33, 941-946.

Huang, W., and Chen, B. (2010). Interaction mechanisms of organic contaminants with burned straw ash charcoal. Journal of Environmental Sciences 22, 1586-1594.

Huff, M. D., Kumar, S., and Lee, J. W. (2014). Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management 146, 303-308.

Hwang, H., Oh, S., Choi, I.-G., and Choi, J. W. (2014). Catalytic effects of magnesium on the characteristics of fast pyrolysis products – Bio-oil, bio-char, and non-condensed pyrolytic gas fractions. Journal of Analytical and Applied Pyrolysis.

Im, J.-K., Boateng, L. K., Flora, J. R. V., Her, N., Zoh, K.-D., Son, A., and Yoon, Y. (2014). Enhanced ultrasonic degradation of acetaminophen and naproxen in the presence of powdered activated carbon and biochar adsorbents. Separation and Purification Technology 123, 96-105.

Inyang, M., and Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134, 232-240.

Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., and Cao, X. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research 22, 1868-1876.

Jain, S., Baruah, B. P., and Khare, P. (2014). Kinetic leaching of high sulphur mine rejects amended with biochar: Buffering implication. Ecological Engineering 71, 703-709.

James, G., Sabatini, D. A., Chiou, C. T., Rutherford, D., Scott, A. C., and Karapanagioti, H. K. (2005). Evaluating phenanthrene sorption on various wood chars. Water Research 39, 549-558.

Jarvis, J. M., Page-Dumroese, D. S., Anderson, N. M., Corilo, Y., and Rodgers, R. P. (2014). Characterization of Fast Pyrolysis Products Generated from Several Western USA Woody Species. Energy & Fuels 28, 6438-6446.

Jeong, C. Y., Wang, J. J., Dodla, S. K., Eberhardt, T. L., and Groom, L. (2012). Effect of Biochar Amendment on Tylosin Adsorption–Desorption and Transport in Two Different Soils. J. Environ. Qual. 41, 1185-1192.

Ji, L., Wan, Y., Zheng, S., and Zhu, D. (2011). Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption. Environmental Science & Technology 45, 5580-5586.

Jia, J., Li, B., Chen, Z., Xie, Z., and Xiong, Z. (2012). Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition 58, 503-509.

Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xu, R., and Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology 136, 87-93.

Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., and Zhang, J. (2014a). Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology 169, 622-629.

Jin, J., Sun, K., Wu, F., Gao, B., Wang, Z., Kang, M., Bai, Y., Zhao, Y., Liu, X., and Xing, B. (2014c). Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. Science of The Total Environment 473–474, 308-316.

Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M., and Sonoki, T. (2014). Physical and chemical characterizations of biochars derived from different agricultural residues. Biogeosciences Discussions 11, 11727-11746.

Jing, X.-R., Wang, Y.-Y., Liu, W.-J., Wang, Y.-K., and Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal 248, 168-174.

Jones, D., Edwards-Jones, G., and Murphy, D. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil biology and Biochemistry 43, 804-813.

Jung, C., Boateng, L. K., Flora, J. R. V., Oh, J., Braswell, M. C., Son, A., and Yoon, Y. (2015). Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: Experimental and molecular modeling study. Chemical Engineering Journal 264, 1-9.

Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., and Gao, B. (2010). Catechol and Humic Acid Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environmental Science & Technology 44, 6189-6195.

Kastner, J. R., Mani, S., and Juneja, A. (2015). Catalytic decomposition of tar using iron supported biochar. Fuel Processing Technology 130, 31-37.

Kearns, J. P., Knappe, D. R., and Summers, R. S. (2014a). Synthetic organic water contaminants in developing communities: an overlooked challenge addressed by adsorption with locally generated char. Journal of Water, Sanitation and Hygiene for Development 4, 422-436.

Kearns, J. P., Wellborn, L. S., Summers, R. S., and Knappe, D. R. U. (2014b). 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Research 62, 20-28.

Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology 44, 1247-1253.

Khan, N., Clark, I., Sánchez-Monedero, M. A., Shea, S., Meier, S., and Bolan, N. (2014). Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresource Technology 168, 245-251.

Khan, S., Wang, N., Reid, B. J., Freddo, A., and Cai, C. (2013). Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental Pollution 175, 64-68.

Kim, K. H., Kim, J.-Y., Cho, T.-S., and Choi, J. W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118, 158-162.

Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., and Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment 505, 102-112.

Klasson, K. T., Ledbetter, C. A., Uchimiya, M., and Lima, I. M. (2013). Activated biochar removes 100% dibromochloropropane from field well water. Environmental Chemistry Letters 11, 271-275.

Koide, R. T., Nguyen, B. T., Skinner, R. H., Dell, C. J., Peoples, M. S., Adler, P. R., and Drohan, P. J. (2014). Biochar amendment of soil improves resilience to climate change. GCB Bioenergy.

Komnitsas, K., Zaharaki, D., Pyliotis, I., Vamvuka, D., and Bartzas, G. (2014). Assessment of pistachio shell biochar quality and its potential for absorption of heavy metals.

Kong, H., He, J., Gao, Y., Wu, H., and Zhu, X. (2011). Cosorption of Phenanthrene and Mercury(II) from Aqueous Solution by Soybean Stalk-Based Biochar. Journal of Agricultural and Food Chemistry 59, 12116-12123.

Konsolakis, M., Kaklidis, N., Marnellos, G.E., Zaharaki, D., and Komnitsas, K. (2015). Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell. Royal Society of Chemistry 5, 73399–73409.

Kwon, S., and Pignatello, J. J. (2005). Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char):  Pseudo Pore Blockage by Model Lipid Components and Its Implications for N2-Probed Surface Properties of Natural Sorbents. Environmental Science & Technology 39, 7932-7939.

Lee, B.-K., and Nguyen, M.-V. (2014). Cu2+ ion adsorption from aqueous solutions by amine activated poultry manure biochar. Journal of Selcuk University Natural and Applied Science, 877-884.

Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., III, Garten, C. T., and Brown, R. C. (2010). Characterization of Biochars Produced from Cornstovers for Soil Amendment. Environmental Science & Technology 44, 7970-7974.

Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., and Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technology 148, 196-201.

Leng, L., Yuan, X. Huang, H., Shao, J., Wang, H., Chen, X., and Zeng, G. (2015). Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Applied Surface Science 346, 223-231. 

Li, B., Fan, C. H., Zhang, H., Chen, Z. Z., Sun, L. Y., and Xiong, Z. Q. (2015). Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment 100, 10-19.

Li, H., Qu, R., Li, C., Guo, W., Han, X., He, F., Ma, Y., and Xing, B. (2014a). Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology 163, 193-198.

Li, J., Li, Y., Wu, M., Zhang, Z., and Lü, J. (2013). Effectiveness of low-temperature biochar in controlling the release and leaching of herbicides in soil. Plant and Soil 370, 333-344.

Li, L., Qiu, Y., Huang, J., Li, F., and Sheng, G. D. (2014c). Mechanisms and Factors Influencing Adsorption of Microcystin-LR on Biochars. Water, Air, & Soil Pollution 225, 1-10.

Li, T., Han, X., Liang, C., Shohag, M. J. I., and Yang, X. (2014d). Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag. Environmental Technology 36, 245-253.

Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., and Chen, H. (2014e). Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy & Fuels 28, 5119-5127.

Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., and Xing, B. (2014). Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal 248, 128-134.

Liang, C., Gasco, G., Fu, S., Mendez, A., and Paz-Ferreiro, J. (2016). Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size. Soil &Tillage Research 164, 3-10.

Liang, F., Li, G.-t., Lin, Q.-m., and Zhao, X.-r. (2014). Crop Yield and Soil Properties in the First 3 Years After Biochar Application to a Calcareous Soil. Journal of Integrative Agriculture 13, 525-532.

Liao, P., Zhan, Z., Dai, J., Wu, X., Zhang, W., Wang, K., and Yuan, S. (2013). Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study. Chemical Engineering Journal 228, 496-505.

Lim, J., Kim, H., Jeong, S., Lee, S., Yang, J., Kim, K., and Ok, Y. (2014). Characterization of burcucumber biochar and its potential as an adsorbent for veterinary 14 antibiotics in water. J. Appl. Biol. Chem 57, 65-72.

Liu, J., Shen, J., Li, Y., Su, Y., Ge, T., Jones, D. L., and Wu, J. (2014a). Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. European Journal of Soil Biology 65, 30-39.

Liu, L., Shen, G., Sun, M., Cao, X., Shang, G., and Chen, P. (2014c). Effect of biochar on nitrous oxide emission and its potential mechanisms. Journal of the Air & Waste Management Association 64, 894-902.

Liu, N., Charrua, A.B., Weng, C-H., Yuan, X., and Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology 198, 55-62.

Liu, P., Liu, W.-J., Jiang, H., Chen, J.-J., Li, W.-W., and Yu, H.-Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology 121, 235-240.

Liu, T., Liu, B., and Zhang, W. (2014e). Nutrients and Heavy Metals in Biochar Produced by Sewage Sludge Pyrolysis: Its Application in Soil Amendment. Pol. J. Environ. Stud. 23, 271-275.

Liu, W.-J., Zeng, F.-X., Jiang, H., and Zhang, X.-S. (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology 102, 8247-8252.

Liu, X., Li, Z., Zhang, Y., Feng, R., and Mahmood, I. B. (2014g). Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Management 34, 1619-1626.

Liu, X., Ye, Y., Liu, Y., Zhang, A., Zhang, X., Li, L., Pan, G., Kibue, G. W., Zheng, J., and Zheng, J. (2014i). Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China. Agricultural Systems 129, 22-29.

Liu, X., Zhang, Y., Li, Z., Feng, R., and Zhang, Y. (2014k). Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource Technology 170, 76-82.

Liu, Z., and Balasubramanian, R. (2013). A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite. Bioresource Technology 146, 371-378.

Liu, Z., and Balasubramanian, R. (2014). A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite. Bioresource Technology 151, 85-90.

Liu, Z., Quek, A., Kent Hoekman, S., and Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943-949.

Lou, L., Wu, B., Wang, L., Luo, L., Xu, X., Hou, J., Xun, B., Hu, B., and Chen, Y. (2011). Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresource technology 102, 4036-4041.

Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., and Paz-Ferreiro, J. (2014a). Can Biochar and Phytoextractors Be Jointly Used for Cadmium Remediation? PLoS ONE 9, e95218.

Lü, J., Li, J., Li, Y., Chen, B., and Bao, Z. (2012). Use of Rice Straw Biochar Simultaneously as the Sustained Release Carrier of Herbicides and Soil Amendment for Their Reduced Leaching. Journal of Agricultural and Food Chemistry 60, 6463-6470.

Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., and Wang, H. (2014c). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment 191, 124-132.

Lu, W., Ding, W., Zhang, J., Li, Y., Luo, J., Bolan, N., and Xie, Z. (2014e). Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biology and Biochemistry 76, 12-21.

Macdonald, L., Farrell, M., Zwieten, L., and Krull, E. (2014). Plant growth responses to biochar addition: an Australian soils perspective. Biology and Fertility of Soils 50, 1035-1045.

Madari, B. E., Lima, L. B., Silva, M. A. S., Novotny, E. H., Alcântara, F. A., Carvalho, M. T. M., and Petter, F. A. (2013). Carbon Distribution in Humic Substance Fractions Extracted from Soils Treated with Charcoal (Biochar). In "Functions of Natural Organic Matter in Changing Environment" (J. Xu, J. Wu and Y. He, eds.), pp. 1003-1006. Springer Netherlands.

Mahinpey, N., Murugan, P., Mani, T., and Raina, R. (2009). Analysis of Bio-Oil, Biogas, and Biochar from Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor. Energy & Fuels 23, 2736-2742.

Mahmoud, D. K., Salleh, M. A. M., Karim, W. A. W. A., Idris, A., and Abidin, Z. Z. (2012). Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 181–182, 449-457.

Major, J., Rondon, M., Molina, D., Riha, S., and Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333, 117-128.

Marchal, G., Smith, K. E. C., Rein, A., Winding, A., Trapp, S., and Karlson, U. G. (2013). Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere 90, 1767-1778.

Marks, E. N., Alcañiz, J., and Domene, X. (2014). Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant and Soil, 1-19.

Martinsen, V., Mulder, J., Shitumbanuma, V., Sparrevik, M., Børresen, T., and Cornelissen, G. (2014). Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. Journal of Plant Nutrition and Soil Science 177, 681-695.

Melo, L. C. A., Coscione Aline R., Abreu Cleide A., Puga Aline P., and Camargo Otavio A. (2013). Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw-derived biochar. Bioresources 8, 4992-5004.

Méndez, A., Paz-Ferreiro, J., Araujo, F., and Gascó, G. (2014). Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. Journal of Analytical and Applied Pyrolysis 107, 46-52.

Méndez, A., Tarquis, A. M., Saa-Requejo, A., Guerrero, F., and Gascó, G. (2013a). Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93, 668-676.

Méndez, A., Terradillos, M., and Gascó, G. (2013c). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis 102, 124-130.

Meng, J., Wang, L., Liu, X., Wu, J., Brookes, P. C., and Xu, J. (2013). Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresource Technology 142, 641-646.

Mia, S., van Groenigen, J. W., van de Voorde, T. F. J., Oram, N. J., Bezemer, T. M., Mommer, L., and Jeffery, S. (2014). Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agriculture, Ecosystems & Environment 191, 83-91.

Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., and Tonon, G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy 62, 149-157.

Mitra, S., Singh, P., Manzoor, S., Bhattacharyya, P., Bera, T., Patra, A.K., Rangan, L., and Borah, P. (2016). Can Rice and Wheat Biochar Amendment Protect the Carbon Loss from Tropical Soils—An Experimental Study. Environmental Progress and Sustainable Energy 35, 183-188.

Mohan, D., Sarswat, A., Ok, Y. S., and Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technology 160, 191-202.

Mui, E. L. K., Cheung, W. H., Valix, M., and McKay, G. (2010). Dye adsorption onto char from bamboo. Journal of Hazardous Materials 177, 1001-1005.

Mukherjee, A., Lal, R., and Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of The Total Environment 487, 26-36.

Mukome, F. N. D., Zhang, X. M., Silva, L. C. R., Six, J., and Parikh, S. J. (2013). Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks. Journal of Agricultural and Food Chemistry 61, 2196-2204.

Mumme, J., Srocke, F., Heeg, K., and Werner, M. (2014). Use of biochars in anaerobic digestion. Bioresource Technology 164, 189-197.

Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., and Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology 102, 57-70.

Muter, O., Berzins, A., Strikauska, S., Pugajeva, I., Bartkevics, V., Dobele, G., Truu, J., Truu, M., and Steiner, C. (2014). The effects of woodchip- and straw-derived biochars on the persistence of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils. Ecotoxicology and Environmental Safety 109, 93-100.

Nartey, O. D., and Zhao, B. W. (2014). Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering.

Nelissen, V., Ruysschaert, G., Müller-Stöver, D., Bodé, S., Cook, J., Ronsse, F., Shackley, S., Boeckx, P., and Hauggaard-Nielsen, H. (2014a). Short-Term Effect of Feedstock and Pyrolysis Temperature on Biochar Characteristics, Soil and Crop Response in Temperate Soils. Agronomy 4, 52-73.

Nelissen, V., Saha, B. K., Ruysschaert, G., and Boeckx, P. (2014c). Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biology and Biochemistry 70, 244-255.

Nguyen, H. N., and Pignatello, J. J. (2013). Laboratory Tests of Biochars as Absorbents for Use in Recovery or Containment of Marine Crude Oil Spills. Environmental Engineering Science 30, 374-380.

Ni, J., Pignatello, J. J., and Xing, B. (2011). Adsorption of Aromatic Carboxylate Ions to Black Carbon (Biochar) Is Accompanied by Proton Exchange with Water. Environmental Science & Technology 45, 9240-9248.

Noor, N. M., Shariff, A., and Abdullah, N. (2012). Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization. Iranica Journal of Energy & Environment 3, 60-65.

Novak, J. M., Lima, I., B., X., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., and Schmobert, H. (2009). Characterization of designer biochars produced at different temperatures and their effects on a lomay sand. Annals of Environmental Science 3, 195-206.

Ogbonnaya, U., Oyelami, A., Matthews, J., Adebisi, O., and Semple, K. T. (2014). Influence of Wood Biochar on Phenanthrene Catabolism in Soils. Environments 1, 60-74.

Oh, S.-Y., and Seo, Y.-D. (2014). Sorptive Removal of Nitro Explosives and Metals Using Biochar. J. Environ. Qual. 43, 1663-1671.

Oh, S.-Y., Son, J.-G., and Chiu, P. (2014). Black carbon-mediated reductive transformation of nitro compounds by hydrogen sulfide. Environmental Earth Sciences, 1-10.

Oh, S. Y., Son, J. G., and Chiu, P. C. (2013). Biochar‐mediated reductive transformation of nitro herbicides and explosives. Environmental Toxicology and Chemistry 32, 501-508.

Ojeda, G., Mattana, S., Àvila, A., Alcañiz, J.M., Volkmann, M., and Bachmann, J. (2015). Are soil–water functions affected by biochar application?. Geoderma 249-250, 1-11.

Oleszczuk, P., Hale, S. E., Lehmann, J., and Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technology 111, 84-91.

Oleszczuk, P., Jośko, I., and Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials 260, 375-382.

Oleszczuk, P., Zielińska, A., and Cornelissen, G. (2014). Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content. Bioresource Technology 156, 139-145.

Olmo, M., Alburquerque, J., Barrón, V., del Campillo, M., Gallardo, A., Fuentes, M., and Villar, R. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils 50, 1177-1187.

Önal, E., Özbay, N., Yargıç, A., Şahin, R., and Gök, Ö. (2014). Performance Evaluation of the Bio-char Heavy Metal Removal Produced from Tomato Factory Waste. In "Progress in Exergy, Energy, and the Environment" (I. Dincer, A. Midilli and H. Kucuk, eds.), pp. 733-740. Springer International Publishing.

Oram, N. J., van de Voorde, T. F. J., Ouwehand, G.-J., Bezemer, T. M., Mommer, L., Jeffery, S., and Groenigen, J. W. V. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment 191, 92-98.

Ouyang, L., Wang, F., Tang, J., Yu, L., and Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition 13, 991-1002.

Ozbay, G., Ozcifci, A., Kokten, E.S., Toker, H., and Baysal, E. (2015). Bio-char Production from Pyrolysis of Furniture Products Waste. ResearchGate, 181-185.

Ozcimen, D., and Ersoy-Mericboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy 35, 1319-1324.

Ozcimen, D., and Karaosmanoglu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 29, 779-787.

Pan, B., Huang, P., Wu, M., Wang, Z., Wang, P., Jiao, X., and Xing, B. (2012). Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresource Technology 103, 367-373.

Pečkytė, J. and Baltrėnaitė, E. (2015). Assessment of heavy metals leaching from (bio)char obtained from industrial sewage sludge. Science - Future of Lithuania 7(4), 399-406.

Pereira, R. G., Heinemann, A. B., Madari, B. E., Carvalho, M. T. d. M., Kliemann, H. J., and Santos, A. P. d. (2012). Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar. Pesquisa Agropecuária Brasileira 47, 716-721.

Peterson, S. C. (2013). Utilization of low-ash biochar to partially replace carbon black in styrene–butadiene rubber composites. Journal of Elastomers and Plastics 45, 487-497.

Pignatello, J. J., Kwon, S., and Lu, Y. (2006). Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char):  Attenuation of Surface Activity by Humic and Fulvic Acids. Environmental Science & Technology 40, 7757-7763.

Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., and Morari, F. (2014). Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. Journal of Soils and Sediments, 1-13.

Prakongkep, N., Gilkes, R. J., and Wiriyakitnateekul, W. (2014). Agronomic benefits of durian shell biochar. Journal of Metals, Materials and Minerals.

Prakongkep, N., Gilkes, R. J., Wiriyakitnateekul, W., Duangchan, A., and Darunsontaya, T. (2013). The Effects of Pyrolysis Conditions on the Chemical and Physical Properties of Rice Husk Biochar. International Journal of Material Science (IJMSCI) 3, 97-103.

Prapagdee, S., Piyatiratitivorakul, S., and Petsom, A. (2014). Activation of Cassava Stem Biochar by Physico-Chemical Method for Stimulating Cadmium Removal Efficiency from Aqueous Solution. Environment Asia 7.

Prendergast-Miller, M. T., Duvall, M., and Sohi, S. P. (2014). Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science 65, 173-185.

Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T., Schleper, C., Sassmann, S., Kitzler, B., Soja, G., and Hood-Nowotny, R. C. (2014). Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE 9, e86388.

Purakayastha, T.J., Kumari, S., and Pathak, H. (2015). Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239-240, 293-303.

Qian, K. Z., Kumar, A., Zhang, H. L., Bellmer, D., and Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable & Sustainable Energy Reviews 42, 1055-1064.

Qian, L., Chen, B., and Hu, D. (2013). Effective Alleviation of Aluminum Phytotoxicity by Manure-Derived Biochar. Environmental Science & Technology 47, 2737-2745.

Qiu, Y., Xiao, X., Cheng, H., Zhou, Z., and Sheng, G. D. (2009a). Influence of Environmental Factors on Pesticide Adsorption by Black Carbon: pH and Model Dissolved Organic Matter. Environmental Science & Technology 43, 4973-4978.

Qiu, Y., Zheng, Z., Zhou, Z., and Sheng, G. D. (2009b). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology 100, 5348-5351.

Quirk, R. G., Van Zwieten, L., Kimber, S., Downie, A., Morris, S., and Rust, J. (2012). Utilization of Biochar in Sugarcane and Sugar-Industry Management. Sugar Tech 14, 321-326.

Rahman, L., Whitelaw-Weckert, M. A., and Orchard, B. (2014). Impact of organic soil amendments, including poultry-litter biochar, on nematodes in a Riverina, New South Wales, vineyard. Soil Research 52, 604-619.

Rahman, M. F. (2014). Removal of Perfluorinated Compounds from Ultrapure and Surface Waters by Adsorption and Ion Exchange, University of Waterloo.

Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., and Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology 166, 303-308.

Reddy, K. R., Xie, T., and Dastgheibi, S. (2014). Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. Journal of Environmental Engineering 140.

Rinklebe, J., Shaheen, S.M., and Frohne, T. (2016). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142, 41-47.

Roberts, D.A., Cole A.J., Paul N.A., and de Nys R. (2015). Algal Biochar Enhances the Re-Vegetation of Stockpiled Mine Soils with Native Grass. Journal of Environmental Management 161, 173-80. 

Rogovska, N., Laird, D. A., Rathke, S. J., and Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230–231, 340-347.

Roh, H., Yu, M.-R., Yakkala, K., Koduru, J. R., Yang, J.-K., and Chang, Y.-Y. Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads. Journal of Industrial and Engineering Chemistry 26, 226-233.

Ronsse, F., van Hecke, S., Dickinson, D., and Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5, 104-115.

Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., and Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology 60, 9-15.

Sadaka, S., Sharara, M. A., Ashworth, A., Keyser, P., Allen, F., and Wright, A. (2014). Characterization of Biochar from Switchgrass Carbonization. Energies 7, 548-567.

Sanchez, M. E., Lindao, E., Margaleff, D., Martinez, O., and Moran, A. (2009). Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis 85, 142-144.

Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., and Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment 191, 39-52.

Schmidt, H.-P., Kammann, C., Niggli, C., Evangelou, M. W. H., Mackie, K. A., and Abiven, S. (2014). Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems & Environment 191, 117-123.

Schomberg, H. H., Gaskin, J. W., Harris, K., Das, K. C., Novak, J. M., Busscher, W. J., Watts, D. W., Woodroof, R. H., Lima, I. M., Ahmedna, M., Rehrah, D., and Xing, B. (2012). Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 41, 1087-1095.

Shan, J., Wang, Y., Gu, J., Zhou, W., Ji, R., and Yan, X. (2014). Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of 14C-catechol in an agricultural soil. Chemosphere 107, 109-114.

Sika, M. P., and Hardie, A. G. (2014). Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. European Journal of Soil Science 65, 113-119.

Singh, B., Singh, B. P., and Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48, 516-525.

Singla, A., Dubey, S. K., Singh, A., and Inubushi, K. (2014). Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agriculture, Ecosystems & Environment 197, 278-287.

Smider, B., and Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems & Environment 191, 99-107.

Sneath, H. E., Hutchings, T. R., and de Leij, F. A. A. M. (2013). Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environmental Pollution 178, 361-366.

Soinne, H., Hovi, J., Tammeorg, P., and Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219–220, 162-167.

Song, X. D., Xue, X. Y., Chen, D. Z., He, P. J., and Dai, X. H. (2014a). Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109, 213-220.

Song, Y., Wang, F., Bian, Y., Kengara, F. O., Jia, M., Xie, Z., and Jiang, X. (2012). Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. Journal of hazardous materials 217, 391-397.

Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., and Qiu, W. (2014c). Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal 242, 36-42.

Spokas, K., Novak, J., Masiello, C., Johnson, M., and Colosky, E. (2014). Manure and fertilizer effects on carbon balance and organic and inorganic carbon losses for an irrigated corn field. Environmental Science & Technology Letters 1, 326-332.

Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Mange 1, 289-303.

Spokas, K. A., and Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science 3, 179-193.

Srinivasan, P., and Sarmah, A. K. (2015). Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic investigation. Science of The Total Environment 502, 471-480.

Stewart, M. (2013). Removal of Organic and Inorganic Contaminants from Oil Sands Tailings using Carbon Based Adsorbents and Native Sediment, University of Alberta.

Suddick, E. C., and Six, J. (2013). An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Science of The Total Environment 465, 298-307.

Sun, K., Gao, B., Ro, K. S., Novak, J. M., Wang, Z., Herbert, S., and Xing, B. (2012a). Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environmental Pollution 163, 167-173.

Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., and Xing, B. (2012b). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology 118, 120-127.

Sun, K., Kang, M., Zhang, Z., Jin, J., Wang, Z., Pan, Z., Xu, D., Wu, F., and Xing, B. (2013a). Impact of Deashing Treatment on Biochar Structural Properties and Potential Sorption Mechanisms of Phenanthrene. Environmental Science & Technology 47, 11473-11481.

Sun, K., Keiluweit, M., Kleber, M., Pan, Z., and Xing, B. (2011a). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource technology 102, 9897-9903.

Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., and Xing, B. (2011b). Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology 102, 5757-5763.

Sun, L., Wan, S., and Luo, W. (2013c). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology 140, 406-413.

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240, 574-578.

Taha, S. M., Amer, M. E., Elmarsafy, A. E., and Elkady, M. Y. (2014). Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. Journal of Environmental Chemical Engineering 2, 2013-2025.

Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F., Alakukku, L., and Helenius, J. (2014). Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant and Soil 374, 89-107.

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere.

Tatarková, V., Hiller, E., and Vaculík, M. (2013). Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and environmental safety 92, 215-221.

Teixidó, M., Pignatello, J. J., Beltrán, J. L., Granados, M., and Peccia, J. (2011). Speciation of the Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environmental Science & Technology 45, 10020-10027.

Thangalazhy-Gopakumar, S., Al-Nadheri, W. M. A., Jegarajan, D., Sahu, J. N., Mubarak, N. M., and Nizamuddin, S. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology.

Tong, D.-L., Xu, R.-K. (2015). Ameliorating Effects of Fungus Chaff and Its Biochar on Soil Acidity. Communications in Soil Science and Plant Analysis 46(15), 1913-1921.

Tong, H., Hu, M., Li, F. B., Liu, C. S., and Chen, M. J. (2014). Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biology and Biochemistry 70, 142-150.

Touray, N., Tsai, W.-T., Chen, H.-R., and Liu, S.-C. (2014). Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 109, 116-122.

Trakal, L., Bingöl, D., Pohořelý, M., Hruška, M., and Komárek, M. (2014a). Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresource Technology 171, 442-451.

Trakal, L., Šigut, R., Šillerová, H., Faturíková, D., and Komárek, M. (2014c). Copper removal from aqueous solution using biochar: Effect of chemical activation. Arabian Journal of Chemistry 7, 43-52.

Trigo, C., Spokas, K. A., Cox, L., and Koskinen, W. C. (2014). Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine. Journal of agricultural and food chemistry 62, 10855-10860.

Troy, S., Lawlor, P., O’ Flynn, C., and Healy, M. (2014). The Impact of Biochar Addition on Nutrient Leaching and Soil Properties from Tillage Soil Amended with Pig Manure. Water, Air, & Soil Pollution 225, 1-15.

Tsai, W.-T., and Chen, H.-R. (2013). Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. International Journal of Environmental Science and Technology 10, 1349-1356.

Tsai, W. T., Liu, S. C., Chen, H. R., Chang, Y. M., and Tsai, Y. L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89, 198-203.

Uchimiya, M., Wartelle, L. H., and Boddu, V. M. (2012). Sorption of triazine and organophosphorus pesticides on soil and biochar. Journal of agricultural and food chemistry 60, 2989-2997.

Uchimiya, M., Wartelle, L. H., Lima, I. M., and Klasson, K. T. (2010). Sorption of deisopropylatrazine on broiler litter biochars. Journal of agricultural and food chemistry 58, 12350-12356.

Usman, A.R.A., Abduljabbar, A., Vithanage, M., Ok, Y.S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S.S., and Al-Wabel, M.I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis 115, 392-400.

Veksha, A., Zaman, W., Layzell, D. B., and Hill, J. M. (2014). Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: Impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis. Bioresource Technology 171, 88-94.

Verhoeven, E., and Six, J. (2014). Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agriculture, Ecosystems & Environment 191, 27-38.

Viger, M., Hancock, R. D., Miglietta, F., and Taylor, G. (2014). More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy 6, 1-15.

Vithanage, M., Rajapaksha, A., Zhang, M., Thiele-Bruhn, S., Lee, S., and Ok, Y. (2014a). Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 1-12.

Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S.-E., and Ok, Y. S. (2014c). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management 141, 95-103.

Wang, L., Butterly, C. R., Wang, Y., Herath, H. M. S. K., Xi, Y. G., and Xiao, X. J. (2014). Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use and Management 30, 119-128.

Wang, X., Zhou, W., Liang, G., Song, D., and Zhang, X. (2015). Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment 538, 137-144.

Wang, Y., Hu, Y., Zhao, X., Wang, S., and Xing, G. (2013a). Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times. Energy & Fuels 27, 5890-5899.

Wang, Y., Wang, L., Fang, G., Herath, H. M. S. K., Wang, Y., Cang, L., Xie, Z., and Zhou, D. (2013c). Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations. Environmental Pollution 172, 86-93.

Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., and Xing, B. (2013d). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution 174, 289-296.

Waqas, M., Khan, S., Qing, H., Reid, B. J., and Chao, C. (2014). The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105, 53-61.

Weyers, S. L., and Spokas, K. A. (2014). Crop residue decomposition in Minnesota biochar amended plots. Solid Earth Discuss. 6, 599–617.

Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., and Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management 146, 189-197.

Wu, M., Pan, B., Zhang, D., Xiao, D., Li, H., Wang, C., and Ning, P. (2013). The sorption of organic contaminants on biochars derived from sediments with high organic carbon content. Chemosphere 90, 782-788.

Wu, Y., Xu, G., and Shao, H. B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth 5, 665-671.

Xi, X., Yan, J., Quan, G., and Cui, L. (2014). Removal of the Pesticide Pymetrozine from Aqueous Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic Temperatures. BioResources 9, 7696-7709.

Xiao, F., and Pignatello, J. J. (2015). π+–π Interactions between (Hetero)aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environmental Science & Technology 49, 906-914.

Xie, M., Chen, W., Xu, Z., Zheng, S., and Zhu, D. (2014). Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environmental Pollution 186, 187-194.

Xie, M., Lv, D., Shi, X., Wan, Y., Chen, W., Mao, J., and Zhu, D. (2013). Sorption of monoaromatic compounds to heated and unheated coals, humic acid, and biochar: Implication for using combustion method to quantify sorption contribution of carbonaceous geosorbents in soil. Applied Geochemistry 35, 289-296.

Xie, T., Reddy, K. R., Wang, C. W., Yargicoglu, E., and Spokas, K. (2015). Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology 45, 939-969.

Xin, J., Liu, R., Fan, H., Wang, M., Li, M., and Liu, X. (2013). Role of sorbent surface functionalities and microporosity in 2,2′,4,4′-tetrabromodiphenyl ether sorption onto biochars. Journal of Environmental Sciences 25, 1368-1378.

Xu, D., Zhao, Y., Sun, K., Gao, B., Wang, Z., Jin, J., Zhang, Z., Wang, S., Yan, Y., Liu, X., and Wu, F. (2014a). Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties. Chemosphere 111, 320-326.

Xu, G., Sun, J., Shao, H., and Chang, S. X. (2014c). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering 62, 54-60.

Xu, R.-k., Xiao, S.-c., Yuan, J.-h., and Zhao, A.-z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology 102, 10293-10298.

Xu, X., Cao, X., Zhao, L., Zhou, H., and Luo, Q. (2014e). Interaction of organic and inorganic fractions of biochar with Pb (II) ion: further elucidation of mechanisms for Pb (II) removal by biochar. RSC Advances 4, 44930-44937.

Xu, Y., and Chen, B. (2014). Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. Journal of Soils and Sediments, 1-11.

Yang, X., Lu, K., McGrouther, K., Che, L., Hu, G., Wang, Q., Liu, X., Shen, L., Huang, H., Ye, Z., and Wang, H. (2015). Bioavailability of Cd and Zn in soils treated with biochars derived
from tobacco stalk and dead pigs. Journal of Soils and Sediments, 1-12.

Yang, Y., Chun, Y., Sheng, G., and Huang, M. (2004). pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 20, 6736-6741.

Yang, Y., Lin, X., Wei, B., Zhao, Y., and Wang, J. (2014). Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. International Journal of Environmental Science and Technology 11, 1093-1100.

Yang, Y., and Sheng, G. (2003a). Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental science & technology 37, 3635-3639.

Yang, Y., and Sheng, G. (2003b). Pesticide adsorptivity of aged particulate matter arising from crop residue burns. Journal of agricultural and food chemistry 51, 5047-5051.

Yao, H., Lu, J., Wu, J., Lu, Z., Wilson, P. C., and Shen, Y. (2012a). Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source. Water, Air, & Soil Pollution 224, 1-9.

Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R., Cao, X., Yang, L., Xue, Y., and Li, H. (2012b). Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials 209–210, 408-413.

Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., and Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal 242, 136-143.

Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., and Spokas, K. (2015). Physical and Chemical Characterization of Waste Wood Derived Biochars. Waste Management 36, 256-68.

Yoo, G., Kim, H., Chen, J., and Kim, Y. (2014). Effects of Biochar Addition on Nitrogen Leaching and Soil Structure following Fertilizer Application to Rice Paddy Soil. Soil Sci. Soc. Am. J. 78, 852-860.

Yuan, H., Lu, T., Wang, Y., Huang, H., and Chen, Y. (2014). Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2 emission. Journal of Analytical and Applied Pyrolysis 110, 277-284.

Zhang, G., Zhang, Q., Sun, K., Liu, X., Zheng, W., and Zhao, Y. (2011a). Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution 159, 2594-2601.

Zhang, H., Zhu, G., Jia, X., Ding, Y., Zhang, M., Gao, Q., Hu, C., and Xu, S. (2011b). Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. Journal of Environmental Sciences 23, 1983-1988.

Zhang, J., Lü, F., Luo, C., Shao, L., and He, P. (2014a). Humification characterization of biochar and its potential as a composting amendment. Journal of Environmental Sciences 26, 390-397.

Zhang, M., Shu, L., Shen, X., Guo, X., Tao, S., Xing, B., and Wang, X. (2014c). Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds. Environmental Pollution 195, 84-90.

Zhang, P., Sun, H., Yu, L., and Sun, T. (2013a). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. Journal of Hazardous Materials 244–245, 217-224.

Zhang, W., Wang, L., and Sun, H. (2011c). Modifications of black carbons and their influence on pyrene sorption. Chemosphere 85, 1306-1311.

Zhang, X. K., Wang, H. L., He, L. Z., Lu, K. P., Sarmah, A., Li, J. W., Bolan, N., Pei, J. C., and Huang, H. G. (2013b). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research 20, 8472-8483.

Zhao, L., Cao, X., Mašek, O., and Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256–257, 1-9.

Zhao, L., Zheng, W., and Cao, X. (2014a). Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure. Chemical Engineering Journal 250, 240-247.

Zhao, X.-r., Li, D., Kong, J., and Lin, Q.-m. (2014c). Does Biochar Addition Influence the Change Points of Soil Phosphorus Leaching? Journal of Integrative Agriculture 13, 499-506.

Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., and Xing, B. (2013a). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology 130, 463-471.

Zheng, H., Wang, Z., Zhao, J., Herbert, S., and Xing, B. (2013c). Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution 181, 60-67.

Zheng, W., Guo, M., Chow, T., Bennett, D. N., and Rajagopalan, N. (2010a). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials 181, 121-126.

Zheng, W., Sharma, B. K., and Rajagopalan, N. (2010c). Using Biochar as a Soil Amendment for Sustainable Agriculture.

Zhu, D., Kwon, S., and Pignatello, J. J. (2005). Adsorption of Single-Ring Organic Compounds to Wood Charcoals Prepared under Different Thermochemical Conditions. Environmental Science & Technology 39, 3990-3998.

Zhu, D., and Pignatello, J. J. (2005). Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model. Environmental Science & Technology 39, 2033-2041.

Zimmerman, A. R. (2010). Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environmental Science & Technology 44, 1295-1301.

Liang, C., Gasco, G., Fu, S., Mendez, A., and Paz-Ferreiro, J. (2016). Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size." Soil &Tillage Research 164, 3-10.

Liu, N., Charrua, A.B., Weng, C-H., Yuan, X., and Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology198, 55-62.